Welcome to the Advanced System Manager's Console. (Advmgr)

EE R I I R I I I R I I R R I S S I R R I R I I I R S I R R S I

TABLE OF CONTENTS
khhkkkhhhkkhhhkhkkhhhkkhhhhdhhhhdhhdhhddhhdhhddhdddhdxddhdddhdxddhddddxddhdxddxrdh*xddkx*dkx*x%*%
Introduction
Acknowledgments
Legal
Advmgr Menu operations descriptions
Advmgr additional programs

abrwbNBRE

Rk Sk Sk b o S R R I b S A R I S R I b S R S S S R I O O

1. Introduction

EE R I R R I I R I I R I I I R R I R R I I R I I S R I O

I have been an advocate of the VMS (later OpenVMS) operating system since I was
first introduced to it back in the early eighties. My computer experience goes back
to the early seventies while with the Scientific Research Staff of Ford Motor
Company. VMS was, and many of we old timers think still is, the best general
purpose time sharing operating system ever written. I shall not sing its praises
here because you already know this. What I have been doing for the last few decades
is developing software to assist a VMS system manager in doing just that. I was the
system manager for a software company a long time ago and found it challenging
because I did not know enough at the time to develop the kind of software that I
and other system programmers have developed over the years. I wish I had then what
I have now and would like to pass it on to you.

EE IR I I R R I O I I S I R I O I I R I I I R I R S I I S R S I R I I R

2. Acknowledgments
kkkhkkhkhhkhkhkhkhkhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhkhhkhhkhhhhhkhkhkhkhhhhhhkhkhkhkhhhhkhhkhkhkhkkhkkk k k krkhkkkxkx**x%

This package contains software I've put together over many years to assist in
managing VMS and in developing so called "System Programs". Some is my own and
much is based on public domain software written by Brian Schenkenberger of Tmeis
and Hunter Goatly formerly of the University of Kentucky. I owe a debt of
gratitude to them, Brian who has helped me numerous times to understand what the
software was doing and getting it running, and Hunter who has not only inspired me
with his writing in the field but has done much to promote VMS.

I'm also indebted to Ralf van Diesen of Advanced Virtualization Technologies in the
Netherlands. He has most generously given me his software and helped me set it up
so that I could run a two node AXP cluster and write these programs to work on it.
He has been tireless in zoom sessions despite the daunting time difference and in
responding to a deluge of emails. He has become one of my best friends. His
software is the best for running AXP VMS.

Much of this software belonging to the above mentioned people has been improved
slightly by making it a bit easier to use. For example, many programs require the
PID of a process to work. I've modified things so that the terminal name will also
suffice. Much of the "internal workings" of these programs have common sections and
these have been moved to a shared image (MARLIB), saving memory and disk space
while improving reliability. I have also re-written most of the programs using
MACROS that make MACR032 and MACR064 fully structured languages.

LR I R I I I S I I R R I I I S I R I I S I I R R R I I I I S I R I S

3. Legal

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhkhhhkhhhkhhhhhhhhdhhhdhdhkhdhkhdhkrkk krkk k*x*%

This software is provided "AS IS" and is supplied for informational purpose

only. No warranty is expressed or implied and no liability can be accepted for
any actions or circumstances incurred from the use of this software or from the
information contained herein. The author makes no claim as to the suitability

or fitness of the software or information contain herein for a particular purpose.

Permission is hereby granted *ONLY* for the "not-for-profit" redistribution of
this software provided that ALL SOURCE and/or OBJECT CODE remains intact and ALL
COPYRIGHT NOTICES remain intact from its original distribution.

(!) NO TITLE TO AND/OR OWNERSHIP OF THIS SOFTWARE IS HEREBY TRANSFERRED. (!)

Note!

Most of this software runs in a highly privileged mode and assumes you are running
with all privileges. It runs at high IPL and some loads code into the operating
system. If you run any of this software and something evil happens, you have been
warned.

LR S I R I I I I R R S R I R R I I S I I I SR I I S

4. Advmgr Menu operations descriptions
khkhkhkkhkhhkhkhkhkhhkhhhhhkhkhkhhhhhhhkhkhkhhhhhhhkhhkhhhhhhkhkhhkhhhhhhkrkhkhkhhhhhk krkhkhkkhkk k k ok k*k*x*%x

If you are using the Advanced Management Console, you need to know a couple of
things about how I've written stuff.

First off, I try to be minimally intrusive on your computer system. I do not
copy stuff to your system disk. Installed shared/privileged images are installed
from where you place the ADVMGR directory tree (hopfully not the system disk).
The same for execulet images loaded into the operating system at boot time. The
system manager must reference ADVMGR:[COM]ADV_SETUP.COM in

SYSSMANAGER: SYSTARTUP_VMS.COM and follow a few other requirements such as:

Many of my scripts and my MENU program call other scripts and/or images in the
ADVMGR directories. They do so using logicals which are defined in LOGIN.DAT
using the installed program, LOGIN.EXE called from the LOGON.COM file. In
addition, I use an unusual way to define default directories in the user
authorization file.

The default device/directory in the UAF should be based on a concealed logical
defined at system boot in the system table,
define/sys/exec/translation=concealed, which points to the physical device and
root directory on the system for each user. An example should suffice. On my
system, ADVMGR is defined as 2DKA100:[ADVMGR.} which is defined in
ADV_SETUP.COM referenced in the system startup script. In the UAF record the
default device and directory are ADVMGR:[000000]. This should be done for any
user whose programs need to be run by other users on the system. I do this for
developers, myself and ADVMGR.

This has two uses. First, it makes changing the physical disks much easier. Just
change the concealed logical. Secondly, it allows the users of my software,
including LOGIN.EXE, to do things without modifying code/scripts. Defining your
device and root directory as a concealed logical makes this information
discoverable and can be used by LOGIN.EXE.

However, this is not mandatory. Other users can make use of LOGIN.EXE and their
own LOGIN.DAT files while using the normal way of defining default device and
directory for the UAF. LOGIN.EXE recognizes this and creates a concealed
logical, zz, in the JOB table for use in further definitions in LOGIN.DAT.

Furthermore, a user can override the internal definition of ZzZ by defining it

in LOGIN.DAT as the very first definition in the file under the search logical
definition section. You could do this for new developers by defining it as your
concealed system logical so they would have access to your material to start.
Overrides in LOGIN.DAT can be added as needed by the new user.

In referencing my material, I use logicals that point to actual directories and
follow the naming convention of using the extension of the files contained therein
followed by the letter “D”. To use my material, the minimum logical definitions
are: EXED, COMD, DATAD and TEMPD. These are defined for you if you are using the
Advanced Managers Console and logged in as ADVMGR. The program, EXED:LOGIN.EXE,
uses definitions found in SYS$LOGIN:LOGIN.DAT. You probably will also want to
define HELPD and MLBD plus any that you think will be helpful to your operation. As
an example, assuming you are logged in as ADVMGR, the logical MARD is defined in
LOGIN.DAT as though you put the command “$ DEFINE/JOB MARD ADVMGR:[MAR]”. The
actual specification for this directory on my system (not using concealed logicals)
is: DKA100:[ADVMGR.MAR]. The LOGIN.EXE program will take a full file spec passed as
an argument, if you want to experiment with another file of definitions.

LOGIN.EXE defines a list of things specified in SYS$LOGIN:LOGIN.DAT:

Logicals in the JOB table

Search Logicals in the JOB table

Logicals in the USER table

Symbols that do many thing for you

Color symbols needed to colorize our operations

Key Definitions

Default Protection

Process name (optional and a bad idea if you use more than one login)

If you are running MENU on a cluster, you will notice that some menu entries are
followed by a red asterisk. These can be run on other nodes from the one you are
logged into. Some of these have violet descriptions rather than green indicating
they are cluster wide by their nature. Those entries which are in violet do not

use SYSMAN. Green entries followed by an asterisk, do. If the asterisk is gold in
color, it means that the output from that procedure can be large and will be
written to a file defined by the cluster table logical ADVOUTPUT. This is discussed
in detail below.

Regardless of whether you are on a cluster, an entry who's description is white
indicates that it must be run at the same level (not as a sub-process) as MENU
and thus will terminate MENU when selected. The keypad “0” key will restart it.

The data file that drives MENU is constructed as described in the file,
DATAD:ADV.DAT. Here you can learn all the little details of how the
programs/scripts are displayed and executed.

In order to enhance readability and to be “cool”, we have colorized much output
from our programs/scripts. In addition, due to the nature of the output from
certain operations and the fact that you may be running the operation on a large
system and/or multi node cluster, output in some cases can be staggering. If you
are logged into a VMS system over a browser (as you might be using AVT’s AXP
emulation), color does not work and scrolling is a guess. We suggest you use a
terminal emulator (we recommend PUTTY which is free) and come in over telnet. PUTTY
and other terminal emulators are capable of buffering a lot of output and this can
be used to advantage.

When the output exceeds the number of lines on your screen, see if your buffer is
large enough to scroll back to examine it from the beginning. If not, you might
increase the buffer capacity of the terminal emulator. Too large a buffer takes up

resources on your terminal emulator host system and will, at some point, make
scrolling an unpleasant task.

In this case, we suggest diverting output to a file. This is done for certain
programs by your having first defined a logical, ADVOUTPUT, into the cluster table
(which you have even if you are not running a cluster) as a full file
specification. e.qg.

$ DEFINE/CLUSTER/EXEC ADVOUTPUT ADVMGR:[TEMP]ADVOUTPUT.TXT ! To create the
logical
$ DEASSIGN/CLUSTER/EXEC ADVOUTPUT ! To remove it

Do this with care as a bad file specification causes all hell to break lose. If you
use concealed logicals in the specification (as above), be sure they are defined
the same in every node’s system table.

When ADVOUTPUT is defined, the image/script uses this to write the output to the
file and not the screen. Programs using this are written to eliminate the
colorization which would make the file very difficult to read. In order for this
operation to work on a cluster, assuming you select multiple nodes on which to run
the process, the output file you have defined is opened in append mode. It is your
responsibility to delete/rename this file at appropriate times in order to
eliminate the “old” information.

In addition, the output file defined in ADVOUTPUT is opened on a node determined
by SYSMAN. If I am running on my NODE1l and define the output file using the
logical TEMPD:, it appears on NODE2. If I define it using R$:[temp[, it is
written on nodel. You will have to check around to find out where it is.

To make life a little easier, we have a menu entry that defines/undefines
ADVOUTPUT in such a way that it is wriiten on the node on which the program(s)
are to be run. In addition, GOLD-KPO will "$ TYPE/PAGE" the output file and
BLUE-KPO will delete it. How you view the file may easily be changed in
LOGIN.DAT. GOLD-COMMA on the ten key pad will deassign ADVOUTPUT.

Note!

The MENU program is set up to issue a CTRL-D to the running TSR program (see below)
in order to display a calendar. We feel this is a nice touch and makes the menu
display a bit more useful. It will do this once a minute so the display is current
+ or - one minute. The TSR is started from ADVMGR:LOGON.COM.

Many procedures ask for argument(s). Though brief, the request is designed to be
descriptive. In most cases, only one argument is needed. In those instances
where more than one is required, there is a code. (2sp) means two arguments are
needed and they should be separated by a space. (2,) means they should be comma
separated. For requests for pid or terminal name, get this information from the
display of "Show Processes". Pid is hexadecimal and terminal name should leave
out the ':'.

Below are descriptions of menu operations in the ADVMGR Menu. Please note that
the selection 2 - 4 are new menus in themselves with many choices including a

discussion. Read the discussion first as it not only describes how things work,
they point you to literature you need to read to understand what you are doing.

"Show Processes" - This selection runs a program that produces output
somewhat similar to "SHOW SYSTEM" but is more brief and includes the terminal name
for those processes that have one connected. It will request an argument of any

letter (rather than just return) to limit output to those processes that have
terminals connected only.

"A1ll Security" - One of the prime responsibilities of a systems manager is
security. Please read the security manual. There are eleven categories of
objects that allow security related settings. This script will be of
considerable assistance in assigning permissions, creating identifiers,
granting identifiers and assigning them to objects to control access to them in
complex ways.

To modify a user, we have written a program to assist and make it easier. It
presents a screen a bit like that of AUTHORIZE showing a user. The labels are
numbered like a data entry screen so you can select and modify them. It is a bit
involved with multiple screens and different ways of entering data to fit the many
different formats of the fields in the UAF record. Please read the details at the
end of this program in addendum A.

You will run the AUTHORIZE utility through this script as well as the ACL

Editor. (I can never remember the required default directory to run AUTHORIZE). In
addition, you may set/remove the current privileges for any process

on the system, including your own, regardless of the authorized privileges
assigned to that user. This assignment will last for the duration of the

process. You have control of the process priority through this menu and can
encrypt/decrypt any file.

Additional information and suggestions are available from that menu.

“Queue Management” - Queue management is complex and involves multiple DCL verbs
and many switches for each command. We have written a script that will assist the
manager in handling normal queue operations. Operations are grouped (except for
gqueue manager operations) by DCL verb. Switches are displayed and numbered and an
option exists to display DCL HELP for each of them.

Based on your input, a command is formed and you are given the option to actually
execute it.

Opcom - All VMS installations save for the very smallest can benefit from having

an operator in the computer room who can mount tapes and disks and handle the
printers. To facilitate communication with said operator(s) OPCOM.EXE was

written by DEC to allow normal users to communicate requests to the operator(s) and
receive replies.

Normally the consol terminal named OPA@: is enabled as a receiver of OPCOM
messages. Other terminals may be enabled to do the same. Functionality may be
destributed among OPCOM terminals. For example, one operator terminal bay
receive and handle requests related to printing, one for mounting/dismounting
tapes/drives and a third for everything else. There are a variety of classes for
which an operator terminal may be enabled and to which a normal user may
designate a request.

As in the Queue management script above, help for each switch (REPLY command
only) is available.

Based on your input, a command is formed and you are given the option to
actually execute 1it.

“TCP/IP Operations - This handles TCP/IP configuration, stop/start, Time
Synchronous operations and a few other things in addition to running TCPIP.

"Roll Your Own". Trial and error. Uses SYSMAN. Good place to add your own
operations for ADVMGR. Test them this way and add them to the menu later.

"Suspend/Resume a Process" - Suspend/Resume will either suspend a process or
resume it, depending on its present state.

"Kill an RWASTed Process" - Special Process Delete is more than the DCL "STOP
PROCESS_NAME" or "STOP/ID=XXXXX". STOP will not work if the chosen process is in
resource wait state. However, this method sneaks into the process' PCB table and
resets the resource wait bits prior to deleting the process.

“Issue Remote Commands” - This operation will allow you to issue a command(s) to
any other terminal on the system. You may do this to a single terminal, a list of
terminals or all the terminals on a node. Commands may be a single one line command
or a DCL script file. A command beginning with a tilde, “~", will cause a CTRL-Y to
be issued before the command.

"Show Other's Default Directory" - Other's Default Directory will use an
executive image to determine the process' default device and directory.

"Show Others Commands" will print out the full command recall buffer of the
other process. It is useful for helping others.

"Show Disk Free Space" - DEC/COMPAQ/HP never thought that a knowledge of the
percentage of a disk that was available (free) was of any interest to a system
manager. We do. This script lists all mounted disks on the system and shows the
percent free space on each one.

"Show Open Files On a Device" - This will show you who has what file(s) open on a
drive. If it’s the system drive, you will get a bunch of output.

“Show Who Has a File Open” was written by Edward A. Heinrich some time ago. He did
an excellent job but had to limit the number of processes to display. Not a problem
for most installations but might be for large operations where lots of folks might
have a file open at the same time. Edward also included more information than I
felt was appropriate. I have a love/hate relationship with RMS so the initial work
on the file specification is done in DCL which provides a valid device and file ID
to my MACR032 program that searches through a bunch of control blocks to get the
info.

I determine the total number of process slots that are generated into the system
and allocate P2 space to store information. The number of process slots is
guaranteed to exceed the number of processes on a given node that can have a file
open and P2 space is damned near infinite.

"Show the Lock Holder" - Get lock holder takes the name of an IASM file, the
specific key for that file's record which is locked, and determines the name of the
process which holds the lock. This is useful for finding out who got the lock and
went fishing. You can free the record by deleting the holder's process.

"Clear a Device Error Count" - Does just that plus memory and cpu error count.
Especially useful for device driver development.

“Force a Dismount” - Sometimes users allocate/mount a device for their personal
use and then forget about it. I know from years of being a system manager that
they don't even log out at the end of the day. This program will take a full
device name (2DKA101) as input and force the dismount and/or deallocation of
the device. It will do it cluster wide so you will likely get some error
messages about not being found on a node.

"Monitor" - Monitor is often run interactively. It displays a bunch of information
in an easily read graphical or list display in real time. In many cases, you need
to monitor for information over a long period of time. The script produces a sub-
process (/NOWAIT) that stops when you tell it to stop, creates a file called
ADVMGR: [TEMP]MONITOR.SUM that you can look at and notifies you when it's complete.
Don't log off when it's running or you'll stop it. You also have the option of
running the procedure as a detached process. No notification but you can log out.

"Image Accounting" - Accounting is enabled by default. However image

accounting is not. This is because it places a very heavy load on the operating
system. Do not run this procedure for long periods unless you're willing to
field the complaints.

This procedure creates a sub-process which will enable image accounting for the
delta time you specify and then produce a report of the results in

ADVMGR: [TEMP]ACT.LOG. It takes two arguments, the delta hours and the delta
minutes.

Run AUTOGEN - AUTOGEN is the DCL script where permanent changes to system
parameters are made. Use it because it checks your proposed changes against
system requirements and prevents you from generating an unusable system. NEVER
run the AUTOGEN script with REBOOT as the final parameter in the command 1line.
This is especially true in a cluster environment as changes could be
incompatible with nodes not modified.

Instead, read the report AUTOGEN creates. It is full of information including
errors that can be corrected prior to the commitment of re-booting. Our script
does this.

"Show Working Sets" - It is often desirable to know about each process' use
of working set pages. This selection will type out a list of all processes and
information on their working set use and parameters.

"Login as Other" - Login as another user does not require that user's
password, just the user name. It can be used to test a program in another
environment.

"Date and Time" - This will give you the date and time plus a bunch of other
information and in living color. I run it at login.

“lock Screen” - You may wish to step away from your terminal without having to
bother to log out then back in and restart a complex editing session. Select this
option and enter your password when you return. Anyone can use it.

"Spy" - Monitor another terminal on this node. Discussed in detail below.

“Log Off” - LOGOUT

khkkhkkhkhkhkhkhhhkhhhhhhkhhhhhhhhhhhhhhkhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhhhkhdhkrkkhrkk kk**

This is the end of the menu description.

khkhkkhkhkkhkhkhhkhkhhhkhhhkhhhhkhhhhhhkhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhkhkhdkhkhdkhkhkhkrkkdkrkk k*x*%

5. Advmgr additional programs

Rk Sk Sk b o S R IR T b S A R R S S R S O R S S S O R O R R

We have included a few other goodies that are not run from the menu.

#

“Shut” This is an improved method of shutting the node/cluster down. It is a DCL
script, TSHUT.COM which is invoked with the command “shut”, defined for you in
LOGIN.DAT. It gives you lots of options, including the ability to change the
EXPECTED_VOTES in a cluster, if needed. It makes sure “REBOOT_CHECK” is always part
of the operation and works in both a cluster and single node environment.

If invoked from an administrator logged in over telnet (any way that involves
TCP/IP), the shutdown proceeds to the point that the system ceases to function but
stops the process of shutdown before it is complete. Forceful stopping of each node
will be required.

On the other hand, invoked from the operators console, the shutdown is clean and
complete.

#

“TSR” TSR.EXE is Paul Klisner and my "Terminate and Stay Resident" program that
sits up in P1 space where it stays as long as the process remains. It captures
control keys (out of band keys) and executes code asynchronously to other
operations in the same process. Thus (in its present form) a CNTRL-X will clear
the screen, a CNTRL-D will write a nice looking calendar in the upper right
corner of the screen with today's date highlighted and a CNTRL-V will toggle the
DCL verify state even in the middle of executing a script. Can be very useful
when debugging DCL scripts.

CNTRL-k will change your privileges, toggling between the default privileges in
the user User Authorization Record and the Authorized privileges. This can be
useful if a user is set up with "normal" default privileges which will keep him
from accidentally damaging the system, but will allow a trusted user to gain his
fully authorized privileges with a single keystroke and then set things back to
normal when he is done. For this to work, the user must have the default

privilege of SETPRV.

Note: The calendar display now includes a toggle status display on the bottom
left. AV for verify on, a P for authorized privileges in effect and an A for
ADVOUTPUT defined.

A new addition is the ability to capture the file id’S of all the files a process
has open at any given instant. It does this with the CNTRL-F key. Rather than pour
file ID's all over your screen in the middle of a process, the CTRL-F key appears
to do nothing. However, it actually creates a logical (RICK_FID) that contains all
the file ID’s. When you are back to a command prompt, FID_TO_NAME.COM will
translate all the file ID’s to full file specifications and print them on your
screen, or put them in a file (TEMPD:OPF.TXT) if you pass the script an argument.

Please note that this operation gives erroneous results when you use it from a sub-
process. It actually gives the results for the parent.

CNTRL-G will switch the undocumented and unsupported DCL command “SET WATCH FILE”
which documents all the file operations happening in your process. This is a
toggle.

Finally, a CNTRL-J will print out the startup greeting message (instructions) on
your terminal.

We have also made things more flexible by allowing changes in what control keys are
associated with what operations and even what operations are enabled. You control
this by defining a symbol to run TSR.EXE and passing it an argument. The argument
consists of a string of characters without spaces. It consists of variables
separated by commas and must be in pairs. The first item in the pair is a number
representing the operation as displayed when TSR is run or when you hit CTRL-J
(AJ). The second item in the pair is either a letter representing the control
character which will be trapped and will activate the function described or a null
(two commas in a row without a space) which will disable the function and not trap
the control character associated with it by default. AJ will show the results. An
“n" followed by a space indicated that the function is disabled. If you change AD
for the calendar, the calendar will no longer appear in the MENU display unless you
change the command line given to the MENU program.

#
“Spy” SPY.EXE Run it from the menu or

$ SPY :== S$EXED:SPY.EXE
At the DCL command line, type:

$ SPY YYxn[, letter, letter] where YYxn is the name of the terminal to be
monitored. Optionally you may specify single letter arguments for the two
control characters used; the first for disconnect and the second for command
entry. For example:

$ SPY TNA4,f,b
Brief instructions will be printed and from that point on, whatever appears on
the screen of the monitored terminal will appear on your terminal as well (with

exceptions noted below).

By default, CTRL-\ will decouple you from the other screen and exit the program,
returning SO space to the O0S.

CTRL-B will prompt you to enter one DCL command for the other terminal (process)
to execute.

TERMINAL EMULATOR SETTINGS:

We use Putty. Spy works best with the following settings that seem to be
different from the default:

Settings: IP and Port as appropriate. Con type: other - telnet
Keyboard: (127), ESC[n~

Window: 132X40, change size of font, the rest as you like.
Translation: IS0-8859-1:1998 (Latin-1, West Europe)
Connection: Disable Nagle's algorithm, IPv4

Telnet: BSD, Active

BACKGROUND:

SPY is a labor of love. We did it over a period of more than six years and
without the benefit of driver listings. Thus it was done by means of deductive
reasoning, "poke and hope" and a terrifying number of system crashes.

Along the way we detoured down a variety of dead ends and made some wrong turns,
but, in the end, we have something that we feel is useful, but not perfect. It
seems to handle any terminal driver based on the TT class terminal driver and
can be run by a person logged in over DECnet. It handles large amounts of output
without dropping characters and seems to handle escape sequences generated
programmatically very well. Command line editing works as advertised but does
not always display correctly which can make it a bit frustrating, especially to
first time users.

Other versions (commercial) may have overcome problems we are still working on.
We have no experience with them.

KNOWN DEFICIENCIES:

One of the problems we have encountered right from the beginning is the
propensity of the Alpha class driver to omit a leading character from the output
stream placed there at the beginning of a $QIO. It took some time, but patterns
started to emerge and we have been able to compensate for this.

So far We've tested: OP, TT, VT, TN, FT, RT (as your terminal) and we suspect it
will work on TX. There is one known exception; while you may monitor someone by
doing a SET HOST to their node, you cannot monitor a person who has logged in
over DECNET. Much to our surprise, doing so did not crash the system, it just
didn't work.

Those programs which utilize the SMG$ Screen Management Facilities, including
DECTPU, will not display their buffers on the monitoring screen.

If you come up with a situation where you have a terminal device name that uses
the class TT driver and SPY tells you it's a bad choice, call us. We'll make
arrangements.

Command line editing can be mildly frustrating. You will notice that things
sometimes echo strangely on both terminals. This is most notable deleting
characters with the backspace key. It echos the state of the command line on a
new line and, on the terminal being monitored, will not overwrite (delete) the
first character entered. Actually it does and full line editing (arrow key
movement, CNTRL-R and toggle over-strike) all work just fine. If it doesn't echo

exactly right, CNTRL-R will re display the actual command line.
We're working on it. You may discover other problems. It's complicated.

#
Command line prompt

Many operating systems employ part or all of the default location where the user
is working as the command prompt. VMS doesn't. It should.

You have a program from Brian Schenkenberger that will intercept calls to
SYS$SETDDIR and modify the prompt to be the new directory structure limited by the
size of the prompt area in the 0S. It uses a modified execulet that captures the
calls to the system service, allows a user written segment to execute before
continuing on to execute normally. It is placed in SYS$LOADABLE_IMAGES by
KITINSTAL.COM when you installed it and loaded with a call to EXED:SSDDLOADER
during ADVMGR setup at boot.

#

EVE Editor as a sub-process. You can start the EVE editor as a sub-process that
will allow you to switch between editing a file and the DCL parent process with a
single keystroke. Start the editor with:

@comd:sedit.com.
Edit a file with:
$ e filename.ext

The routines will edit it straight away, if it’s in your default directory, search
for it in many places and ask if you want to edit what it found and allow you to
create and edit a new file in the default directory. Very convenient. The way I
have things set up, you can switch back and forth between editing and the DCL
parent process with the keypad “Enter” key.

Below are my key definitions. Operations following the "/" are the GOLD
operations. It should serve you as a starting point.

EVE Editor
(ten key pad)
Find/Find wild Find Selected Find Next Do
Select Del L/Rest L Cut Replace

Start of Line/Open Line Del Char Copy
End of Line/Mark Write Buf/Go To Paste

Next Buffer Gold Attach Parent/Sh Key
(six key pad)

(insert) Top(home) Page UP

Delete Selected/Restore(delete) Bottom(end) Page Down
F1 = Help

F2 = Set Right Margine 80/132

F3 = Uppercase Word/Lowercase Word

F4 = Quit

F5 = Fill Paragraph/Capitalize Word

F6 = (Leave this alone and don't use it)

F7 = Show Buffers/Buffer Messages

F8 =

F9 Save Attributes

F10 = One Window
F11 = Next Window
F12 = Two Windows

You can redefine keys to your own purpose by editing EVE_KEYS.EVE in the .EVE] sub-
directory. Then Start EVE by typing 'EDIT' at the DCL command line. Hit the DO key,
PF4, and at the editor command line type: @ADVMGR:[EVE]EVE_KEYS.EVE. This will load
and execute the EVE commands in that file. This file defines your keys. Next, issue
the command: SAVE ATTRIBUTES, (F9, using my definitions). This will save all the
changes into the binary section file which is loaded at startup.

#

Compile/Link. I have included a script, COMD:BUILD.COM, which can build most
anything written in any language supported on your system. The script can easily be
modified to include additional languages. It is very easy to use but requires the
above mentioned logicals. Type “build” at the command 1line to see instructions.

Type “BUILD M DISMOUNT” to see it in action. It will compile and link
MARD:DISMOUNT.MAR and put the executable in EXED:.

#

Login hook. Most installations connect to the internet, even though this is a very
dangerous thing to do and should be avoided. At a minimum, secure your system from
remote login by using the LOGINOUT hook mechanism. If you have a “C” compiler, you
can modify ADVMGR:[c]LIOH.C to suit your needs. As presented, the hook will prevent
any login from TCP/IP (Telnet, SSH) that does not begin with “USER”. On my system
all accounts beginning with “USER” are captive.

#

SHOW_CLUSTER. The ten key pad key, comma (or in some cases plus) will invoke the
command SHOW_CLUSTER/CONTINUOUS. Its initialization file is DATAD:SHOW_CLUSTER.INI
which you can modify to suit your own purposes. Panning is enabled. Read the
details in System Manager Utilities 2.

#

SEARCH - The DCL command verb SEARCH is an often used facility that most
everyone finds helpful. Like most other DCL verbs, it has many switches. We
concidered treating it like other verbs where there is a menu selection and all
the switches are displayed and you can get help.... That is not how most
programmers use it.

What I usually want is a quick reminder of what programs might have a specific
system service call to remind me of the named parameters so I can use the same
thing in the program I'm writing now. Under the premis of KISS, I have writted
a script that simplifies using the search verb without eliminating all of the
most useful switches.

SEA is defined in LOGIN.DAT to execute RSEARCH.COM. This script takes five
parameters (arguments) separated by spaces. All but the first will default
usefully.

P1 is the search string (required). Leave all arguments blank and you get a
brief reminder of how it works. You may enter more that one string separated by
commas for a logical search that requires all strings to be in a source line, or
separated by "|" for any of the strings being found in the source string. If a
search string contains a space, enclose it in double quotes.

For a lot of my work, my default directory contains the files I want to search
and all I have to do is type SEA 'string' and off it goes. If I need to be more

specific with what files to search, I can provide an additional parameter.

P2 is what files to search and can contain as many file specification parts as
you wich to provide. Those parts not given will be defaulted. You can get pretty
fancy here. But, if you simply want to fill the place so you can pass the next
argument, just type an asterisk.

P3 is the argument for /WINDOWS= which defaults to (0,0). You may type ',n',
'n,', 'n,m', 'n'" or just ',' to hold the place. In the case of a single nummeric
value, SEARCH will divide it into it's own idea of before and after.

P4 is a string of file types to exclude from the search in the form:
'*.exe,*.mlb,*.0obj,*.sth'. To hold the place in order to use the last parameter
just enter any single character.

P5 Any character will cause the output to be placed in TEMPD:SEA.TXT and then
typed out.

#

MACR032 & MACR064 Structured Macros. Back in the day, programming languages all had
the ubiquitous GOTO (or equivalent) statement. This led to code that was hard to
understand and had numerous bugs that were difficult to impossible to find.
Correcting them often led to more bugs. In the late seventies, structured code
statements were introduced which led to much more understandable code that was
infinitely easier to debug. I did this at the Ford lab, and later for my own
company which used an early version of Disk Corp. DBL business language. I'm an
assembly language programmer and have done this for MACRO 32 and MACR064. You have
an example in the .MAR] sub-directory, the .MLB files and the source for the macros
in the .MLB] sub-directory.

This is controversial. I do not know why this is controversial as the code is
usually as efficient as code without it and so very much more readable and
reliable. Only rarely must code be as fast as possible. Most systems programs
provided herein are run only occasionally. They need to be maintainable which means
readable.

#

CONNECTING to the system. - There are a variety of methods to connect to an
OpenVMS system. If you are using AXP emulation software, you usually have the
ability to connect to the operator's console and one or two COM communications
ports. In some cases this is done with a browser running on a laptop or using a
terminal emulator running on a laptop. Often this is sufficient for the
hobbyist, but for real systems, addition connections are needed.

One way is the old fashioned terminal connector like a DecTerm that multiplexes
many terminals connected over either twisted pair lines with DB25 connectors or
Ethernet connectors. This is supported by some AXP emulators like AVT's. A less
expensive and simpler way is to connect a laptop running a terminal emulator to
a local router either with a radio or an Ethernet cable, the latter being more
secure. This connects via TELNET emulation to the TCP/IP TELNET server service
which is easily configured on VMS. This will handle large numbers of connections
limited basically by the capacity of your VMS system and/or your router. If you
use and Ethernet switch rather than a router, the connection will be more secure
because a physical connection will be required.

If you need to allow connecting from outside over the internet, security becomes
more difficult.

Router port forwarding to the standard TELNET port works - too well. I tried it.

within the hour the number of attempted logins increased to the point where the
VMS system was brought to its knees. Not broken, but useless. Don''t do this.

My next attempt was to set port forwarding on the router to use a very
non-standard port number. This actually worked pretty well. I left it like that for
several months and don't believe there was a single attack. My good fortune.

A better way is to use Secure Shell or SSH-2. I set up port forwarding using a
non-standard port, set up the VMS SSH-2 server to require both public/private

key file pair authentication and VMS username/password authentication. I
disseminated the private key with a passphrase attached. Thus, the login

sequence requires an SSH connection to a known non-standard port, the user has his
terminal emulator set to use SSH-2 with the properly formatted private key, the
user is required to enter the passphrase associated with that private key and

must then enter a valid VMS user name and password. You are not likely to have
uninvited guests entering this way.

The setup for the PUTTY terminal emulator is in Appendix B and the way to handle
the public/private key pair is described in Appendix C. Do not use the standard
key pair generation technique offered in the TCP/IP configuration procedure. It
generates useless files and sub-directories that only confuse the issue.

#
This ends the ADVMGR manual documentation. I hope it suffices for your purposes.
You can contact me if you need help or have questions.

If you are a programmer, you might be interested in reading ADVMGR_PROGRAMMER, a
document full of all sorts of opinions, tips, tricks and other crap reflecting on
fifty years of messing with computers as a research scientist, a businessman, a
systems programmer and a provider of software.

Rick Marsh Ph.D.

Tulasi Software Systems
www . rickmarsh.com
rick@rickmarsh.com

Addendum A: The SYSUAF authorization data entry program.

Adding a new user is a two step process. Choose 1. Add a User. A listing of all
the users will be shown to you. You will then be asked for a unique user name.
the SYSUAF.LIS file will be searched to be sure it is unique. It will then ask
for the UIC octal group number and octal member number. The UIC formed from
these will be used to search SYSUAF.LIS to be sure it is unique. When all is
well, it will add the user, update SYSUAF.LIS and throw you into the program we
are discussing here. This program may be run from 3. Modify a User in which case
it will ask for the user name to modify.

In adding a user, the fields you need to change are:

The default device (include the colon ":" at the end).

The default directory, [xxxx].

The default login script, LGICMD. Often LOGIN.COM on my system.
The password is blank, change it.

The user is added disabled. modify the flags vector accordingly.

You may wish to modify other fields at this time. For a new user, most fields
are obtained from the user name DEFAULT which is used as a template. You may use
this program to modify the DEFAULT user name as well.

DISCUSSION:

Please rely on the documentation in the System Managers Utilities Manual and
HELP in AUTHORIZE for details regarding each field in SYSUAF.DAT (the
authorization file) and the meaning of all the various values that make them up.
This program makes changing many of them easier but does not help you understand
what you are doing.

In order to maximize flexibility and longevity, this program reads in the flags
values and privilege values from files: DATAD:FLGLST.DAT and DATAD:PRVLST.DAT.
In turn, they are produced by COMD:CREFLGLST.COM AND COMD:CREPRVLST.COM
respectively from SYS$LIBRARY:STARLET.REQ and should be run after each major
upgrade of the 0S.

The main screen displays a large amount of information gleaned from a SYSUAF.DAT
record. The difference is that our display is a data entry screen with numbered
fields you can select and change. Fields contain a variety of data types in a
variety of formats; everything from simple numbers to huge bit vectors. There
are also dates, names, a UIC field plus others. Numbers are decimal except for
the UIC field which is octal. Alpha characters are forced by the data entry
software to be uppercase.

On the primary window, field labels are color coded. Green is normal. Red
displays information only and can't be changed. Light Blue means a different
format with many possibilities which require a secondary screen for display and
change. Orange means the DATE data represents a delta time (days) rather than a
date. In the case of the orange UIC, it suggests you may not want to go there.
When you add a new user, make sure the new UIC is unique. If it isn't, all

sorts of problems will happen in the future with security. There may be
legitimate reasons for changing the UIC on an existing user. We allow it and try
to do the following. The program will create a sub-process that will attempt to
add the new UIC to the rights list database. It will likely succeed with the new
UIC, if it is unique and fail to add the username. The operation is logged and
the log file printed on the screen so you can see any errors.

This will allow you to grant an identifier to the new UIC for security but will
leave the old UIC in the rights list database which could lead to duplicate
error messages in the future. The same process will change all the file
ownership's to the new UIC.

A better way is to REMOVE the user, ADD the user with a unique UIC, GRANT the
user the appropriate identifiers, use the menu selection to put the new
ownership on all his files and then go into this modify program to finish
setting any different parameters necessary. Cumbersome, but it avoids a raft of
future problems.

On separate screens that represent data as bit vectors (flags and privileges)
the color red indicates the flag is set or the privilege is granted. Primary
days and Secondary days are listed separately. A day can be moved back and forth
between the categories by selecting the day.

Access restrictions are by hour in a twenty-four hour vector. Each listed hour
can be granted access (green) or denied access (red) by selecting its number.

Password change is done a bit differently from the standard way of doing things.
See $SETUAI system service for details. If you enter a password for a user, we
actually do the hash using existing salt and encryption algorithm fields in that
record and then change the password change date. We do not allow you to change
SALT and ENCRYPT in this program.

This operation covers the most often used fields in the SYSUAF record, but not
all of them. For special cases, you can run AUTHORIZE from the same menu and do
things by hand.

